3.509 \(\int \cot ^4(e+f x) (a+b \sin ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=276 \[ \frac {(3 a-5 b) \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}-\frac {\cot ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {(a-b) \cos ^2(e+f x) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {(5 a-3 b) (a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{3 f \sqrt {a+b \sin ^2(e+f x)}}+\frac {8 (a-b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{3 f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}} \]

[Out]

-1/3*cot(f*x+e)^3*(a+b*sin(f*x+e)^2)^(3/2)/f+(a-b)*cos(f*x+e)^2*cot(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/f+1/3*(3*a
-5*b)*cos(f*x+e)*sin(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/f+8/3*(a-b)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)
*(cos(f*x+e)^2)^(1/2)*(a+b*sin(f*x+e)^2)^(1/2)/f/(1+b*sin(f*x+e)^2/a)^(1/2)-1/3*(5*a-3*b)*(a+b)*EllipticF(sin(
f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(1+b*sin(f*x+e)^2/a)^(1/2)/f/(a+b*sin(f*x+e)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.35, antiderivative size = 276, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3196, 473, 580, 528, 524, 426, 424, 421, 419} \[ \frac {(3 a-5 b) \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}-\frac {\cot ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {(a-b) \cos ^2(e+f x) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {(5 a-3 b) (a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{3 f \sqrt {a+b \sin ^2(e+f x)}}+\frac {8 (a-b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{3 f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^4*(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

((a - b)*Cos[e + f*x]^2*Cot[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/f + ((3*a - 5*b)*Cos[e + f*x]*Sin[e + f*x]*Sq
rt[a + b*Sin[e + f*x]^2])/(3*f) - (Cot[e + f*x]^3*(a + b*Sin[e + f*x]^2)^(3/2))/(3*f) + (8*(a - b)*Sqrt[Cos[e
+ f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*f*Sqrt[1 + (b*Si
n[e + f*x]^2)/a]) - ((5*a - 3*b)*(a + b)*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e +
f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(3*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 473

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^p*(c + d*x^n)^q)/(e*(m + 1)), x] - Dist[n/(e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*x^n)^(p -
1)*(c + d*x^n)^(q - 1)*Simp[b*c*p + a*d*q + b*d*(p + q)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b*
c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] && LtQ[m, -1] && GtQ[p, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x
]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 528

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
(f*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(n*(p + q + 1) + 1)), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 580

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*g*(m + 1)), x] - Dist[1/(a*g^n*(m + 1
)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f)*(m + 1) + e*n*(b*c*(p + 1) + a*d*q)
 + d*((b*e - a*f)*(m + 1) + b*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && IGtQ[n
, 0] && GtQ[q, 0] && LtQ[m, -1] &&  !(EqQ[q, 1] && SimplerQ[e + f*x^n, c + d*x^n])

Rule 3196

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \cot ^4(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx &=\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {\left (1-x^2\right )^{3/2} \left (a+b x^2\right )^{3/2}}{x^4} \, dx,x,\sin (e+f x)\right )}{f}\\ &=-\frac {\cot ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {\left (2 \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1-x^2} \left (-\frac {3}{2} (a-b)-3 b x^2\right ) \sqrt {a+b x^2}}{x^2} \, dx,x,\sin (e+f x)\right )}{3 f}\\ &=\frac {(a-b) \cos ^2(e+f x) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {\cot ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {\left (2 \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1-x^2} \left (\frac {3}{2} \left (2 a^2-5 a b+b^2\right )+\frac {3}{2} (3 a-5 b) b x^2\right )}{\sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 f}\\ &=\frac {(a-b) \cos ^2(e+f x) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {(3 a-5 b) \cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}-\frac {\cot ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {\left (2 \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {\frac {3}{2} (a-3 b) (3 a-b) b+12 (a-b) b^2 x^2}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{9 b f}\\ &=\frac {(a-b) \cos ^2(e+f x) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {(3 a-5 b) \cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}-\frac {\cot ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {\left (8 (a-b) \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 f}-\frac {\left ((5 a-3 b) (a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 f}\\ &=\frac {(a-b) \cos ^2(e+f x) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {(3 a-5 b) \cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}-\frac {\cot ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {\left (8 (a-b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {\left ((5 a-3 b) (a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{3 f \sqrt {a+b \sin ^2(e+f x)}}\\ &=\frac {(a-b) \cos ^2(e+f x) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {(3 a-5 b) \cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}-\frac {\cot ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{3 f}+\frac {8 (a-b) \sqrt {\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {(5 a-3 b) (a+b) \sqrt {\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 f \sqrt {a+b \sin ^2(e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 4.79, size = 218, normalized size = 0.79 \[ \frac {-4 \left (5 a^2+2 a b-3 b^2\right ) \sqrt {\frac {2 a-b \cos (2 (e+f x))+b}{a}} F\left (e+f x\left |-\frac {b}{a}\right .\right )-\frac {\cot (e+f x) \csc ^2(e+f x) \left (\left (64 a^2-32 a b-79 b^2\right ) \cos (2 (e+f x))-32 a^2-2 b (6 a-11 b) \cos (4 (e+f x))+44 a b-b^2 \cos (6 (e+f x))+58 b^2\right )}{4 \sqrt {2}}+32 a (a-b) \sqrt {\frac {2 a-b \cos (2 (e+f x))+b}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )}{12 f \sqrt {2 a-b \cos (2 (e+f x))+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^4*(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(-1/4*((-32*a^2 + 44*a*b + 58*b^2 + (64*a^2 - 32*a*b - 79*b^2)*Cos[2*(e + f*x)] - 2*(6*a - 11*b)*b*Cos[4*(e +
f*x)] - b^2*Cos[6*(e + f*x)])*Cot[e + f*x]*Csc[e + f*x]^2)/Sqrt[2] + 32*a*(a - b)*Sqrt[(2*a + b - b*Cos[2*(e +
 f*x)])/a]*EllipticE[e + f*x, -(b/a)] - 4*(5*a^2 + 2*a*b - 3*b^2)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*Ellip
ticF[e + f*x, -(b/a)])/(12*f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])

________________________________________________________________________________________

fricas [F]  time = 0.60, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-{\left (b \cos \left (f x + e\right )^{2} - a - b\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \cot \left (f x + e\right )^{4}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral(-(b*cos(f*x + e)^2 - a - b)*sqrt(-b*cos(f*x + e)^2 + a + b)*cot(f*x + e)^4, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cot \left (f x + e\right )^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sin(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^4, x)

________________________________________________________________________________________

maple [A]  time = 1.74, size = 419, normalized size = 1.52 \[ -\frac {-b^{2} \left (\sin ^{8}\left (f x +e \right )\right )+5 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticF \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2} \left (\sin ^{3}\left (f x +e \right )\right )+2 b \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticF \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a \left (\sin ^{3}\left (f x +e \right )\right )-3 b^{2} \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticF \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) \left (\sin ^{3}\left (f x +e \right )\right )-8 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticE \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2} \left (\sin ^{3}\left (f x +e \right )\right )+8 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticE \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a b \left (\sin ^{3}\left (f x +e \right )\right )+3 a b \left (\sin ^{6}\left (f x +e \right )\right )-3 b^{2} \left (\sin ^{6}\left (f x +e \right )\right )+4 a^{2} \left (\sin ^{4}\left (f x +e \right )\right )-8 a b \left (\sin ^{4}\left (f x +e \right )\right )+4 b^{2} \left (\sin ^{4}\left (f x +e \right )\right )-5 a^{2} \left (\sin ^{2}\left (f x +e \right )\right )+5 a b \left (\sin ^{2}\left (f x +e \right )\right )+a^{2}}{3 \sin \left (f x +e \right )^{3} \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^4*(a+b*sin(f*x+e)^2)^(3/2),x)

[Out]

-1/3*(-b^2*sin(f*x+e)^8+5*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2
))*a^2*sin(f*x+e)^3+2*b*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))
*a*sin(f*x+e)^3-3*b^2*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*s
in(f*x+e)^3-8*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a^2*sin(f
*x+e)^3+8*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a*b*sin(f*x+e
)^3+3*a*b*sin(f*x+e)^6-3*b^2*sin(f*x+e)^6+4*a^2*sin(f*x+e)^4-8*a*b*sin(f*x+e)^4+4*b^2*sin(f*x+e)^4-5*a^2*sin(f
*x+e)^2+5*a*b*sin(f*x+e)^2+a^2)/sin(f*x+e)^3/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cot \left (f x + e\right )^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sin(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^4, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int {\mathrm {cot}\left (e+f\,x\right )}^4\,{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e + f*x)^4*(a + b*sin(e + f*x)^2)^(3/2),x)

[Out]

int(cot(e + f*x)^4*(a + b*sin(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**4*(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________